Adrenal and pituitary disease in pregnancy

February 10, 2017 Academic half day Jeannette Goguen, MD

Disclosure

- Relevant relationships with commercial entities:
 - None
- Potential for conflicts within this presentation:
 - None
- Steps taken to review and mitigate potential bias:
 - N/A

2/10/17

Objectives

By the end of this talk, you should know:

- 1. Basic maternal-fetal normal physiology of HPA axis.
- 2. How our approach to pituitary and adrenal diseases differs in the pregnant patient.

Overview

- Adrenal
 - Cushing's syndrome
 - Addison's
 - CAH
 - Chronic CG Rx
 - Hyperaldo
 - Pheochromocytoma
- · Pituitary:
 - Prolactinoma
 - Acromegaly
 - Hypopituitarism

Overview

- Adrenal
 - Cushing's syndrome
 - Addison's
 - CAH
 - Chronic CG Rx
 - Hyperaldo
 - Pheochromocytoma
- Pituitary:
 - Prolactinoma
 - Acromegaly
 - Hypopituitarism

Mom

Placenta

Fetus

Cross-section of placenta Cherinic place Fetus Cherinic relative Fetus Syncytiotrophoblastic covering Mother Mother Mother https://www.youtube.com/watch?v=bped-RVWsLk

ADRENAL	

Adrenal physiology in pregnancy

- Placenta makes estrogen and progesterone (no other steroid hormones)
- · Needs DHEAS as substrate
- · DHEAS comes from the fetus
- Fetal adrenal glands are large, produce 5X as much steroid hormones as adult does
- · Fetal steroids affect lung maturation and initiation of labour

Adrenal physiology: Cortisol

- ↑Estrogen → ↑CBG
 - ∴ Total cortisol levels are increased
- ↑ Free cortisol, too (↓ clearance)
- · Very little of maternal steroid hormones are seen by fetus:

 - placenta converts cortisol to cortisoneplacenta delivers GC back to maternal circulation
 - placenta aromatizes maternal androgens to estrogen
 - dexamethasone is delivered to the fetus

Adrenal physiology cont' d

- · Placenta produces ACTH and CRH
- · Maternal levels of ACTH
 - T1: ↓ slight
 - T2: normal
 - T3: ↑ slight

Cushing syndrome
Lindsay, Endocr rev 2005
Polli Pituitary 2004
Rare (< 100 cases) reported in literature (75% infertile)

New diagnosis:

- Usually ADRENAL source in pregnancy - 60% adrenal, 34 benign
- Maternal risk: GDM (1/3), ↑BP 70%,
 - ↑ preeclampsia, CHF, death
- Fetal risk:
 - Spontaneous abortion, preterm delivery
 - 15% perinatal mortality
 - Rarely suppression of the HPA axis

Cushing syndrome: Challenges in diagnosis

- In normal pregnancy:
 - 8 AM plasma cortisol: 420 \pm 110 nmol/l at 11 weeks of gestation and 980 \pm 250 nmol/l at 26 weeks of gestation; the levels remained elevated until labor and delivery
 - 24 hr UFC: ↑2-3X by T2 and T3
 - O/N DST inaccurate since:
 - ↑CBG
 - Resistance to suppression (CRH + ACTH made in placenta)
 - · Can use higher cutoff for diagnosis
 - Maintained circadian rhythm

Cushing syndrome: Challenges in diagnosis (cont' d)

- · For diagnosis:
 - 24 hour UFC > 3X elevation
 - 8 mg O/N DST: similar to non-pregnant state
 - ACTH level to establish if ACTH-dependent: (often not fully suppressed in ACTHindependent Cushings)
- Imaging: US or MRI

Cushing's syndrome: Treatment

- Early T2 surgery: 6/7 fetuses survived with no deficit vs 7/19 with no OR
- GC after OR, start wean after delivery
- Ketoconazole has been used (3 cases reported)
 - Teratogenic in animal studies
- Metyrapone has been used

Addison's disease

Ambrosi J Endo Invest 2003

- If undiagnosed hypoadrenalism:
 - Fetal IUGR
 - Low maternal BP, skin hyperpigmentation
 - Addisonian crisis during delivery

Addison's Dx and Rx

- <u>Diagnosis:</u> Cortrosyn stim test (but no established ref values in pregnancy)
 - R/O associated diseases (thyroid, pituitary)
- · Treatment:
 - Usual GC and MC replacement are continued throughout pregnancy
 - T1: May need dexamethasone im 1-2 mg/d with severe nausea and vomiting
 - T3: May require slightly higher doses of GC and floring

CAH: 21-OH deficiency

Lo JCEM 1999, Endo Metab Clin N Am 2001 Meyer-Bahlburg Arch Sex Behav 2008

- Woman may have difficulty conceiving
 - Hyperandrogenism, abn introitus, less interest?
- · Issues for fetus
 - Androgenization from maternal androgens (limited, but can happen)
 - CAH if father carries defective gene (1/62 general population, CYP21 genotype)
 - HPA suppression due to maternal excess GC, especially if dexamethasome used
 - Delivery with android pelvis

CAH: 21-OH deficiency

- Use GC OTHER THAN dexamethasone, unless concerned about possible fetal CAH
- Assess clinical status, electrolytes, serum androgens q 6 weeks T1, then q 8 weeks
 - Target testosterone/free testosterone levels: high normal range for pregnancy
- Fetal sex determination (less concern re: maternal androgens for male fetus)

-	

CAH: Delivery

- Stress dose steroids for delivery (solucortef 50-100 mg iv q 8 hr) then rapid taper to previous maintenance dose
- May need C-section for android pelvis/reconstructed genitals
- · Evaluate infant for ambiguous genitalia
 - Ambiguous genitalia could be due to CAH in fetus or from maternal androgens crossing placenta

Patients on chronic GC therapy

- · No adverse effect on fetus
- · Dexamethasone should NOT be used
- · Screen mother for GDM, hypertension
- · Stress dose steroids for delivery
- Should not affect fetus (monitor for theoretical HPA axis suppression)
- · GC therapy safe in breastfeeding

Renin-angiotensinaldosterone system ↑ E+P → 4X ↑ renin → ↑ AT II ↑ Aldosterone Blunted

Progesterone

↑ Blood volume

response of maternal circulation to AT II

Hyperaldosteronism Abraham eMedicine 2007

- Rare in pregnancy (18 cases reported)
- · Normal pregnancy:
 - ↑ plasma aldosterone levels
 - ↑ renin levels are increased in normal pregnancy, will be lower in primary hyperaldosteronism

Primary F	lyperaldos	teronism:
	Dx + Rx	

- · Diagnosis:
 - Dangerous to salt load
 - Dynamic testing: renin won' t ↑ in response to upright posture in primary hyperaldo
- Treatment:
 - OR in T2
 - Antihypertensives: methyldopa, β-blockers, calcium channel blockers

Pheochromocytoma

Abraham eMedicine 2007

- · Patient presents similar to the nonpregnant state
- High mortality if unrecognized (up to 48% mother, 54% fetus)
- If treated: 2% maternal mortality, fetal 11%

-			
-			
_			
-			
_			
-			
_			
_			
-			
_			
-			
_			
-			
-			
_			
-			
_			

Pheochromocytoma: Dx + Rx	-
Diagnosis: Urinary catecholamines and metanephrines not altered by pregnant state Localize with US/MRI	
Medical treatment: Phenoxybenzamine +/- propranolol Labetolol	
 <u>Surgery:</u> Before 24 weeks after α-blockade After 24 weeks: after fetal maturity with C-section 	
PITUITARY	
Mass effect	
Hyperfunction	
Hypofunction	
Tryporunction	
	-
Pituitary size in pregnancy	
Gonzalez Am J Med 1988	
 Gradual ↑ of 30% in maternal pituitary volume over gestation 	
• 12 mm in height a few days postpartum (↑2.6 mm)	

• Rarely causes visual field defects

No ↑ pituitary tumor formation during pregnancy

Prolactin in pregnancy

Mom:

- Estrogen→ ↑Lactotrophs (20% →50% of pituitary cells)
- ↑Prolactin:
 - T1 20-40
 - T2: 50-150
 - T3: 100-400
- Prolactin is non-glycosylated (more active)

<u>Placenta</u> produces prolactin (into amniotic fluid)

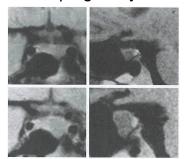
Fetal prolactin: 80-500

		•		
I Jra	lactinon	200 10	nraana	n 01/
-10	1246 111 16 16 1	1125 111		111111
	ıacıııcı	IIGO III	DICALIC	
_			1 - J -	- ,

- Getting pregnant
 - Assess safety: tumor size, hypopituitarism
 - 90% pregnancy rate with DA treatment
 - Switch to bromocriptine if possible
 - Barrier contraception to establish cycle dates
 - GnRH has been used for DA failure
 - Molitch J Reprod Med 1999

Prolactinomas

- STOP bromocriptine once pregnant
 - unless tumor > 10 mm (Molitch, J Reprod Med 99)
- Monitoring in pregnancy q 2 months
 - Headache
 - Visual field:
 - Formal with macroadenomas
 - DI, other hormone deficiencies
 - MRI only if problem with above
 - NOT prolactin levels


Effects of pregnancy on tumor:

- Risk of growth off therapy (Molitch, 92)
 - Micro: 1.3%
 - Macro:

 - Untreated = 25%
 After shrinkage with DA = "less likely"
 After surgery = 3%
- Another series (Seshadri, 07)
 Micro (104 patients): none significantly regrew
 Idiopathic (85 patients): none
 Macro (21 patients), off bromocriptine: 2
- · After pregnancy:

 - Breast feeding is safeOften regression of tumor!

Prolactinoma growing in pregnancy

Therapy of prolactinoma in pregnancy

- · If tumor growth occurs:
 - Bromocriptine (cabergoline)
 - Surgery
- Risk of medications (Ricci Reprod Toxicol 2002):
 - Bromocriptine: FU for >6000 pregnancies (kids followed up to 9 years)
 - Cabergoline: FU for 265 pregnancies
- No info for quinagolide

1	1

Box 5: Management of hyperprolactinemia in pregnancy

- There is no evidence of increased teratogenicity associated with bromocriptine or cabergoline use during pregnancy**

 Similarly, there is no evidence of increased risk of abortion or multiple pregnancies with dopamine agonist use

- agonist use size before pregnancies win dopannie agonist use size before pregnancy is < 10 mm, dopannie agonist therapy is stopped during pregnancy because the risk of humour expansion is low!

 If the tumour size before pregnancy is = 10 mm before pregnancy, bromocriptine use is advised during pregnancy, bromocriptine use is advised during pregnancy to avoid significant tumour expansion.

 All patients should be evaluated every 2 months during pregnancy or a history of macroadenoma

 Formal visual field testing is indicated in patients with symptoms or a history of macroadenoma

 It visual field defects develop despite dopannine agonist treatment, early delivery or pituitary surgery should be considered.

Serri, O. et al. CMAJ 2003;169:575-581

CMAJ-JAMC

Growth hormone in pregnancy

- Mom:
 - ↓ somatotroph number
 - ↓ GH by T2
 - ↑ IGF-1 (due to stimulation by fetal GH)
- Fetus:
 - Makes GH
 - Makes IGF-1 and IGF-2 (may be independent of GH)
- Placenta:
 - Variant GH
 - GHRH, IGF-1

Acromegaly in pregnancy

- · Getting pregnant
 - Often irregular menses or amenorrhea
 - May be due to ↑prolactin or gonadotroph destruction or stalk effect on gonadotrophs
 - May need to use bromocriptine to conceive
- · Diagnosing acromegaly during pregnancy
 - Challenging (↑GH from placenta)
 - Pulsatile GH, MRI

- · Monitoring during pregnancy
 - Mass effect
 - Hyperfunction: Insulin resistance, cardiac
 - Hypofunction
- Treatment during pregnancy: If mass effect
 - Bromocriptine
 - There are reports of octreotide being used (crosses placenta)
 - Surgery

Hypopituitarism

During pregnancy:

- · Due to pre-existing mass lesion
- Vasopressinase from placenta: ADH \downarrow
- New onset diabetes insipidus during pregnancy may be associated with acute fatty liver of pregnancy and the HELLP syndrome

Postpartum:

- Due to Sheehan's syndrome
- · Due to hypophysitis

Treatment of hypopituitarism

Thyroxine	↑ Dose (30-50%) in T1:		
	Aim free T4 high-normal (Alexander NEJM 04)		
Cortisol	Not dexamethasone		
ADH	Vasopressinase ↑ risk DI		
	Treat with DDAVP		
Sex hormones	No need		
GH	No need		
Prolactin	Can't breast feed		
Oxytocin	No effect		

ı	I/I	/h	a t	da	I nee	d to	kno	14/2
ı	νı	///	aı	uυ	ınee	นเบ	KIIC	JVV 🤨

- 1. Bromocriptine can be useful:
 - To treat prolactinoma
 - To treat acromegaly
 - To rescue mass effect of pituitary tumors during pregnancy by shrinking the normal expanded pregnant gland.
- 2. Most patients with prolactinomas and GH-producing tumors do well.
- 3. If you use a non-dex glucocorticoid to replace cortisol deficiency, the risk of fetal HPA axis suppression is small.

What do I need to know? (cont')

- Cushing's syndrome and acromegaly are very difficult to diagnose during pregnancy, due to effects of fetal and placental physiology (important to understand those effects).
- 5. Cushing's syndrome and pheochromocytomas are BIG trouble in pregnancy.
- 6. Vasopressinase can precipitate otherwise mild preclinical DI.

		_