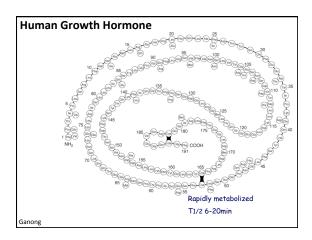
Acromegaly

Jeannette Goguen, MD Academic Half Day Friday, Feb 12, 2016

Disclosures

None!

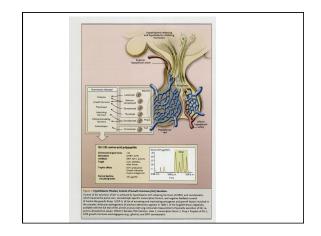

Objectives

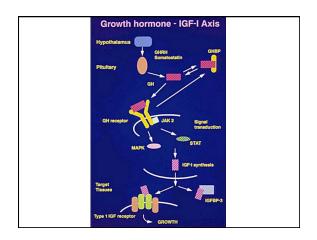
By the end of this presentation, you should know:

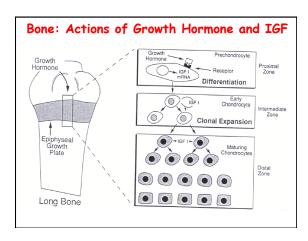
- 1. The differential diagnosis of acromegaly
- 2. The challenges in making the diagnosis of acromegaly
- 3. The principles of therapy including when to use:
 - a. Drugs (octreotide LAR, cabergoline, pegvisomant),
 - b. Surgery
 - c. Radiation

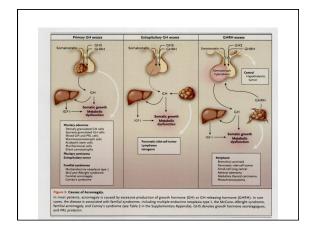
Overview

- Background/Pathophysiology
- How to diagnose acromegaly
- Treatment options
- Monitoring for complications

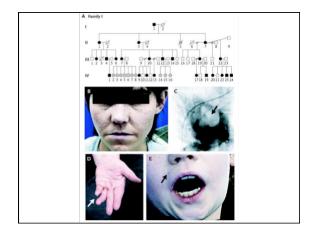



Actions of GH and IGF-1

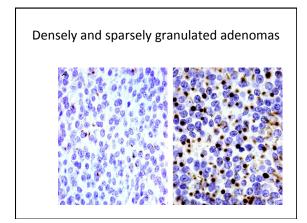

- GH
- Increased hepatic glucose output → increased glucose
 Na+ retention
 Decreased insulin sensitivity


- Lipolysis
 Protein synthesis
 Epiphysial growth
 IGF-1 production
- IGF-1
 - Insulin-like actionAntilipolysisProtein synthesis

 - Epiphysial growth

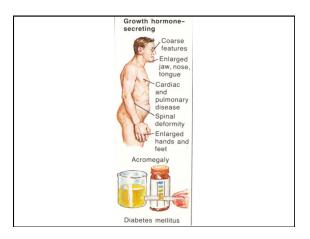


Genetic causes of acromegaly


What's the diagnosis?

- 1. Primary pigmented nodular adrenocortical disease (ACTH- independent Cushing's)
- 2. Lentiginosis (including blue nevi)
- 3. Other tumors:
 - Myxomas
 - Schwannomas
 - Acromegaly: adenoma or mammosomatotroph hyperplasia
 - Testicular Sertoli cell tumor
 - Thyroid tumors, etc

·		



Sparsely granulated vs densely granulated predicts response to octreotide Bhayana JCEM 2005

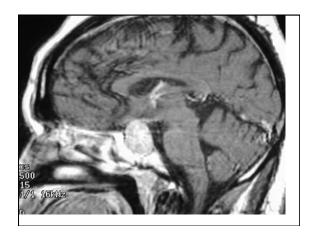
- Univariate analysis for responders
 - densely granulated somatotroph adenomas (80% vs. 43.8%; P = 0.024
 - to be older (51.3 vs. 38.2 yr)
 - to have smaller tumors
 - to require a lower maximum dose of SSA (24 vs. 31 mg every 4 wk; P = 0.013).
 - to have lower
 - baseline IGF-I (453 vs. 716 microg/liter; P < 0.001)
 GH levels (2.7 vs. 7.8 microg/liter; P < 0.05)
- Multivariate analysis
 - densely granulated adenoma the strongest predictor of complete response

Symptoms in acromegaly

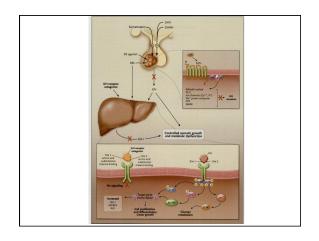
- Headache, hyperhydrosis, fatigueChanges in face/dentition/hands/feetVisual field defect
- Carpal tunnel syndrome
- Metabolic: hyperglycemia, dyslipidemia, hypertension
- Cardiovascular disease
- Hypertrophic arthritis (osteoarthritis)
- Sleep apnea
- Colon polyps
- Hypogonadism
- Kidney stones
- Benign prostatic hypertrophy
- Multinodular goiter

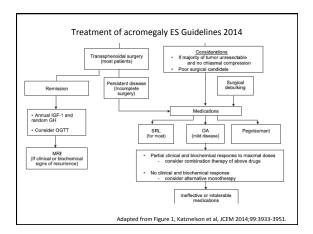
Typical hands

Increased heel pad thinkness


Diagnosing acromegaly

- Clinical picture
- IGF-1 above the ULN (corrected for gender and age)
- Non-suppressible GH
 - 75 g oral glucose challenge, 2 hour:


Time	0	30'	60'	90'	180'
Glucose	9.8	15	20	21	18
GH	5	5	7	5	4


What causes misleading IGF-1 levels? Falsely lowered IGF-1 Malnourished state Pregnancy Liver disease Puberty/Adolescence Hypothyroidism Uncontrolled thyrotoxicosis Poorly controlled diabetes Glucocorticoid Rx Obesity Oral contraceptives

What causes misl	leading GH levels?
High/nonsuppressed GH and low IGF1	High GH and normal/high IGF-1
Fasting and anorexia	Pregnancy
Poorly controlled diabetes	Puberty
Renal disease	Uncontrolled hyperthyroidism
Liver disease	
Estrogen Rx/Pregnancy	

What would you do now?	
What treatment would you offer? • Would you recommend surgery? Would you pre-medicate the patient? • If the patient goes to surgery, how will you assess him postoperatively? • If they require medical therapy, what are your options and how would you decide which medication to use? • When would you recommend radiation? Which type of radiation would you recommend?	
What are our options for treatment? • Medical - Octreotide - Cabergoline - Pegvisomant • Surgical • Radiation - Gamma knife - Fractionated	

What are our treatment goals?

- 1. Normalize both IGF-1 and suppressed GH.
 - Increased cardiovascular risk with elevated GH levels
 - Patients feel unwell with suboptimal GH levels
- 2. Ensure no mass effect/tumor growth
- 3. Manage the complications

Mortality in acromegaly: a meta-analysis Dekkers JCEM 2008 • Meta-analysis of 16 trials • Primary endpoint: weighted average of the standardized mortality ratio (SMR) • Results: — Overall: SMR 1.72 (1.62-1.83) — Post surgery: SMR 1.32	
Impact of treatment	
 Longer survival is predicted if: – GH < 2.5 ug/L 	
Younger ageShorter duration of disease	
No hypertensionHoldaway Pituitary 1999Kauppinen-Makelin JCEM 2005	
	1
How do you prescribe the drugs?	

Octreotide	
Indications: After failure of surgery First line if surgery contraindicated 7 First line if surgery won't be curative	
Effectiveness:	
Side effects: Gi cramps, diarrhea (usu temporary) Gallstone "sludge" Hyperglycemia	-
 Dose: Try sc first to assess for side effects Octreotide LAR 20 mg q monthly increase dose q 2-3 months prm→30mg → (40 mg) monthly 	
Cost: for 20 mg: \$25,000/yr	
	1
Cabergoline	
 Indications: Co-prolactin secreting tumors Pts with mild-moderate increased IGF-1 (25-50% above ULN) 	
 In combination with SSA if partial response to SSA Effectiveness: Ψ IGF-1 < 300 in 35% of patients 	
Side effects: Nausea, dizziness	
 Dose: Cabergoline 1-2 mg weekly in divided doses Abs R JCEM 1998 	
• Cost: 2 mg/wk = \$5000/year	
Pegvisomant	
 Indications: Failure of surgery and other medical options 	
 Effectiveness: Reduce-normalize IGF-1 levels in > 90% pts Tumor may grow! 	
 Side-effects: 20% of pts get increased AST Check q month x 6, then q 6 months, d/c if >3 fold up 	
Dose: 10-30 mg sc daily Load with 40 mg, then 10 mg daily, check IGF-1 q 4-6 weeks, increase by 5 mg increments prn	
• Cost: for 20 mg is \$80,000/yr	

Transn	henoidal	surgery
Hallsb	Henoluai	SUISCIV

- Mass effect: esp visual compromise
- Assess for cure and for hypopituitarism post-op
- Microadenomas and noninvasive macroadenomas:
 - 60-80% cure rate

Radiation			
	Conventional fractionated radiation	Gamma knife	
Time to remission	5 yrs 10-20 yrs for full effect	1-1.5 yr	
Hypopituitarism	50%	28%	
Loss of vision		Must be > 3 mm away from optic chiasm	
Radiation necrosis	Yes	Yes	
Second malignancy	Yes	Yes	

 What are the long-term management issues, besides hormonal hyper-secretion and mass effects, and how would you monitor for them?

1	2
	J

Monitoring for complications of acromegaly

Disease-related	Headache, fatigue, hyperhydrosis IGF-1 q 6 mo, suppressed GH q yr
Metabolic	DM, lipids, BP, Ca2+, BMD
CVD	LVH, CAD, 2D ECHO;
Skeletal	Arthritis, CTS, OP, jaw malocclusion
Respiratory	Sleep apnea
GI	Colon polyps
GU	Kidney stones, BPH
Other	Hypopituitarism, MNG
Mass effect	Visual field defect, MRI

- What is different about the etiology of GH excess in the patient with gigantism compared to the patient with acromegaly?
- How does your investigation and treatment different than in the adult?

What is different about the etiology of GH excess in the patient with gigantism vs acromegaly?

- Very rare: 0.6% of pituitary adenomas
- More often due to hypothalamic GHRH excess
- Mammosomatotroph most commonly affected
- Genetic syndromes:
 - McCune-Albright: 20% have increased GH, can be normal height with premature puberty
 - MEN1: usually 4th and fifth decades, 1 pt 5 yo
 - Carney's complex
 - NF-1 + optic nerve fibromas
 - Acromegaly kindreds: AD, as young as 9 yo

_					
_					
_					
_					
_					
_					
_					

How is the presentation different than in the adult?

- Can get obesity and macrocephaly at presentation
- · Can get ketoacidosis in adolecents
- Differential for tall stature
 - Genetic tall stature
 - Delayed puberty
 - Hyperthyroidism
 - Syndromic or chromosomal cause of tall stature (eg, XYY syndrome).

How does your investigation and treatment different than in the adult?

- Glucose suppression of GH:
 - In one prospective study of 126 tall adolescents (height 3.1 +/- 0.8 SDS), 31 percent of normal subjects failed to suppress GH
- IGF-1 levels
- MR
- Treatment the same: Med vs surgery, avoid radiation

Conclusions

- 1. Think of the diagnosis, and other conditions that can alter lab results
- Aim for normalization of IGF-1 and suppressed GH Will often require multiple modalities
- 3. Monitor for complications

•		
_		
•		
•		
•		
•		
•		
•		